Kaiko provides both text models (LLMs) and emotion models. This page explains available models, capabilities, and how to choose the right one.
Text models generate responses to user messages, similar to other LLM APIs.
| Model | Context Window | Typical Latency | Best For |
|---|---|---|---|
gpt-4.1-nano | 8k tokens | ~200–500ms | Fast, lightweight conversations, real-time agents |
gpt-4.1-small/medium/largeFuture | TBD | TBD | Higher accuracy, longer reasoning tasks |
Notes
prompt_tokens) + output (completion_tokens).temperature, max_tokens, top_p, etc.Emotion models analyze emotional tone of messages. They return category, text (readable intensity), and raw scores.
| Model | Dimensions | Languages | Typical Latency | Best For |
|---|---|---|---|---|
emotion-v1 | joy, sadness, anger, fear, love, surprise | English (multilingual in beta) | ~100–200ms | Real-time emotional inference for chat, analytics, coaching bots |
Example Response
"emotions": {
"user": {
"category": "joy",
"text": "Highly JOY",
"raw": {
"joy": 0.99,
"sadness": 0.002,
"anger": 0.003
}
}
}We regularly update models to improve accuracy and performance.
emotion-v1, gpt-4.1-nano) are production-ready.-beta).Example deprecation header:
Kaiko-Deprecation: 2025-12-01
Kaiko-Replacement: emotion-v2emotion-v1).context_id.emotion-v2.Next: see Emotion APIs for how to call emotion-v1, or Unified Chat API to combine models.